Oxidative stress induced in E. coli by the human antimicrobial peptide LL-37

نویسندگان

  • Heejun Choi
  • Zhilin Yang
  • James C Weisshaar
چکیده

Antimicrobial peptides (AMPs) are thought to kill bacterial cells by permeabilizing their membranes. However, some antimicrobial peptides inhibit E. coli growth more efficiently in aerobic than in anaerobic conditions. In the attack of the human cathelicidin LL-37 on E. coli, real-time, single-cell fluorescence imaging reveals the timing of membrane permeabilization and the onset of oxidative stress. For cells growing aerobically, a CellROX Green assay indicates that LL-37 induces rapid formation of oxidative species after entry into the periplasm, but before permeabilization of the cytoplasmic membrane (CM). A cytoplasmic Amplex Red assay signals a subsequent burst of oxidative species, most likely hydrogen peroxide, shortly after permeabilization of the CM. These signals are much stronger in the presence of oxygen, a functional electron transport chain, and a large proton motive force (PMF). They are much weaker in cells growing anaerobically, by either fermentation or anaerobic respiration. In aerobic growth, the oxidative signals are attenuated in a cytochrome oxidase-bd deletion mutant, but not in a -bo3 deletion mutant, suggesting a specific effect of LL-37 on the electron transport chain. The AMPs melittin and LL-37 induce strong oxidative signals and exhibit O2-sensitive MICs, while the AMPs indolicidin and cecropin A do not. These results suggest that AMP activity in different tissues may be tuned according to the local oxygen level. This may be significant for control of opportunistic pathogens while enabling growth of commensal bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15.

Antibiotics target specific biochemical mechanisms in bacteria. In response to new drugs, pathogenic bacteria rapidly develop resistance. In contrast, antimicrobial peptides (AMPs) have retained broad spectrum antibacterial potency over millions of years. We present single-cell fluorescence assays that detect reactive oxygen species (ROS) in the Escherichia coli cytoplasm in real time. Within 3...

متن کامل

Effect of intracellular expression of antimicrobial peptide LL-37 on growth of escherichia coli strain TOP10 under aerobic and anaerobic conditions.

Antimicrobial peptides (AMPs) can cause lysis of target bacteria by directly inserting themselves into the lipid bilayer. This killing mechanism confounds the identification of the intracellular targets of AMPs. To circumvent this, we used a shuttle vector containing the inducible expression of a human cathelicidin-related AMP, LL-37, to examine its effect on Escherichia coli TOP10 under aerobi...

متن کامل

Evaluating the Antiviral Activities of Human Cathelicidin LL-37 Peptide Against Rotavirus in Vitro

Background Rotavirus is the most prevalent cause of severe gastroenteritis, hospitalizations, and deaths among infants and young children, globally. No specific antiviral drug is available against rotavirus infection.  Objective The current study aimed to assess the antiviral effect of human cathelicidin antimicrobial peptide LL-37 on rotavirus infection in vitro.  Methods  This study was con...

متن کامل

RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey.

Rhesus monkey bone marrow expresses a cathelicidin whose C-terminal domain comprises a 37-residue alpha-helical peptide (RL-37) that resembles human LL-37. Like its human counterpart, RL-37 rapidly permeabilized the membranes of Escherichia coli ML-35p and lysed liposomes that simulated bacterial membranes. When tested in media whose NaCl concentrations approximated those of extracellular fluid...

متن کامل

Uropathogenic Escherichia coli Modulates Immune Responses and Its Curli Fimbriae Interact with the Antimicrobial Peptide LL-37

Bacterial growth in multicellular communities, or biofilms, offers many potential advantages over single-cell growth, including resistance to antimicrobial factors. Here we describe the interaction between the biofilm-promoting components curli fimbriae and cellulose of uropathogenic E. coli and the endogenous antimicrobial defense in the urinary tract. We also demonstrate the impact of this in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017